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ABSTRACT

In this study, artificial neural networks (ANNS) ti network type feed- forward back
propagation used for performance analysis of siatige vapor compression refrigeration
system using refrigerant R134a, which does not denthe ozone layer. An experimental
investigation was done to find the role of suctjgressure and other variables like inlet
temperature to the compressor, delivery pressutéetdemperature to the compressor, to the
heat absorbed at evaporator per kg of refrigeiaxperimentation has been performed under
transient as well as steady condition as compregseed changes due to the fluctuation of
voltage and rate of cooling at condenser also sadee to day to day changes in
environmental condition. Due to transient conditiie conventional analytical approach
involves more complicated analytical equation aheotetical assumptions , whereas
experimental studies are more expensive and timstgoing , so in this paper an attempt
has been made to train (ANNs) with network typedferward back prop with suction
pressure, temperature inlet to compressor, delipgrgsure, temperature outlet to compressor
input parameter and heat absorbed at evaporatoutpat parameter, and network has been
successfully trained to predict output, network emebles close to each other
withR?=0.9999988 RMSE =0.201kJ/kg COV=0.1089%&ANNs with Network type -feed-

forward back propagation, training function- TRAIML adaptation learning function — =
o

LEARNGDM, can be successfully applied in the fielfl performance analysis of simple &
)]

vapour compression refrigeration system. g‘J
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1. INTRODUCTION

Refrigeration is the process of removing heat feolower temperature zone and discarding it

to a higher temperature zone. Heat naturally fldvesn hot to cold. Refrigeration is,
therefore, the opposite of the natural flow of hdathas many applications in daily life
including chilling, freezing, and air-conditioning.
Modern refrigeration systems operate using a vaponpression cycle. This cycle takes
advantage of the following five fundamental physménciples:
» The natural flow of heat is from a hot to a colsheo
* In order to change the state of a substance frguidito gas through boiling or
evaporation, heat energy is required.
* In order to liquefy or condense a gas into a ligheat must be removed.
* As the pressure increases, the boiling point odearing point generally increases.
» As the pressure reduces, the boiling point or cosithg point generally decreases.
The temperature at which a liquid boils varies viltk pressure. As the pressure falls in a
system, so does the boiling point. For examplstaatdard atmospheric pressure (1.013 bars),
water boils at 100°C. If the pressure falls to & ospheres, the boiling point of water will
be approximately 60°C. For a given substance, thikn point is limited by the critical
temperature at the upper end, above which it cagxist as a liquid, and by the triple point at
the lower end, which is at the freezing temperatateany point between these two limits, if
the liquid is at a pressure below its boiling puessit will remain as liquid and will be sub-
cooled below the saturation condition. When theprature is higher than saturation, the
substance will be a gas and superheated. If bqthds as well as vapor are at rest in the
same enclosure, and no other volatile substangeesent, the condition must lie on the
saturation line. In order to operate the refrigem@tna lower temperature than the product or
process that needs to be cooled, the refrigeranilsxg temperature is controlled by varying
the pressure. Furthermost commercial refrigerangs slected to operate at a specified
temperature and pressure bands. Typically they baiig temperatures in the -10°C to -
45°C range and saturation pressures in the 1 tmbsphere range.
A simple vapor compression refrigeration systemhwsimplest expansion device as a
capillary tube is used in several of small or mednefrigeration applications like a domestic
refrigerator, deep freezer, water cooler, roomcainditioners, cooling cabinets and muchg
more all over the world. The small scale refrigematmachines are produced in Iargei«
numbers and have a substantial contribution toggneonsumption. Energy conservation ing‘]
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refrigeration, air conditioning, and heat pump egs has a huge potential. The working

conditions for a refrigerating system in steadyrapen depend on several factors: boundary
conditions (ambient temperature, cold room tempeeatcompressor speed, and control
settings), refrigerant type and refrigerant chasystem architecture and size, thermal loads.
The performance is affected by matching of all ¢hisstors. Theoretical performance of the
system deteriorates in real conditions due to iiraeand external irreversibility in the system,
whereas experimental studies are more expensivéraaeconsuming.

Artificial intelligence systems in refrigeration érair conditioning field are increasing
gradually to solve the complicated problems. Agidi intelligence systems include areas
such as expert systems, ANN, genetic algorithmzzyfuogic and various hybrid systems,
which combine two or more techniques [1,2]. The maivantages of ANN compared to
other expert systems are its speed, simplicity, ality to model a multi-variable problem
to solve complex relationships between the varsmbded can extract the nonlinear
relationships by means of training data [1,2]. ABWercomes the limitations of conventional
approaches by extracting the required informatisingitraining data, which has not required
any specific analytical equations. ANN model carebéast the desired output of the system
using limited training data.Ding3] summarized the various simulation techniques for
modeling and performance prediction of vapor commgmn refrigeration systems. ANFIS is
an MLFFN consisting of nodes and directional lintkgt combines the learning capabilities
of a neural network and reasoning capabilitiesuaizy logic[4].M. Mohanraget al[5] has
reviewed the performance of refrigeration, air agbading and heat pump (RACHP) systems
are analyzed in terms of the first law (energy wsia) and second law (exergy analysis) of
thermodynamics using conventional approaches (doaly and experimental
methods).Practically a refrigeration system hawaok under transient conditions. Steady or
transient conditionANN can be successfully appfdstudy in the design and balancing of
components of a “vapor compression refrigeratiorstesy” for optimization of its
performance.The values calculated from the ANN fdations were found to be in good
agreement with the actual values. This method thdlp the engineer to obtain a very
accurate and fast forecast of system performance.

2. REVIEW OF LITERATURE

A summary of ANN applications for vapor compresssystems is listed in Table 1.
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Table 1 Applications of ANN for vapor compression systems

Authors Network Year Equipment

[references] architectures

Hosoz and Ertun¢ MLFFN 2006 Cascade refrigeration
[6] system

Yilmaz and| MLFFN 2007 Mechanical cooling systen
Atik[7]

Performance of refrigeration systems

Hosoz and Erturj6] studied the suitability of using MLFFN-Multi-layefieed forward
network to predict the performance of a cascadegerhtion system. The inputs to the
network are water mass flow rate and evaporatad, l@dnile the outputs are evaporating
temperature, compressor power in the lower circ@P for the lower circuit, compressor
power in the higher circuit and overall COP forazde refrigeration system. The network
using Levenberg—Marguardt (LM) variant was optimiZer a 2-4-5 (neurons in input-
hidden—output layers) configuration. ANN predictesults were reported to be closer to
experimental values having correlation coefficieot$.996, 0.994, 0.97, 0.985, 0.953 for
evaporating temperature, compressor power in loassuit, COP for lower circuit,
compressor power in higher circuit and overall CQfPa cascade refrigeration system,
respectively with corresponding mean relative eradr0.2%, 3.6%, 3.6%, 3.9% and6%.

A Multi-layer feed forward network with one neurial input layer (condenser water flow
rate) and four neurons in output layer (input poimezooling and heating mode, COP of the
system in both cooling and heating modes) was dpeel for predicting the performance of
a variable cooling capacity mechanical cooling elydi7]. It was reported that ANN (using
1-6-4 configuration) predicted results were closerexperimental results with average
relative errors of 1.37%, 4.44%, 2.05%, 1.95% fgout power, heating power, heating
COP, and for coolingCOP, respectively. The R2 \alter predicting the input power,
heating power, heating COP and cooling COP are 20.99972, 0.988 and 0.990,
respectively.

3. ARTIFICIAL NEURAL NETWORK: AN OVERVIEW

Artificial neural networks (ANNSs) are a computatmodel used in computer science and
other research disciplines, which is based on gelawllection of simple neural units
(artificial neurons), loosely analogous to the aotasd behavior of a biological brain's axons.
Each neural unit is connected with many others, lmdgs can enhance or inhibit theg
activation state of adjoining neural units. Eacllividual neural unit computes using

summation function. There may be a beginning famctor limiting function on each
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connection and on the unit itself, such that thgnai must surpass the limit before

propagating to other neurons. These systems afdeasiling and trained, rather than
explicitly programmed, and excel in areas wheresttiation or feature detection is difficult
to express in a traditional computer program.

Artificial neural networks (ANN) try to mirror thierain functions in a computerized way by
restoring the learning mechanisms the basis of hubsavior. ANN can operate like a
black box model, which requires no detailed infatiora about the system or equipment.
ANN can learn the relationship between input antpwubased on the training data. The
structure of an artificial neuron is illustrated kg.1 and Fig 2. ANN is a nonlinear
informational processing device, which is builtrfranterconnected elementary processing
devices called neurons. Each input is multipliedabgonnection weight. The product and
biases are summed and transformed through a trafhgietion (consists of algebraic
equations) to generate a final output. The prooés®mbining the signals and generating
the output of each connection is represented aghiveMost commonly used network
architectures in the field of RACHP are

(i) Multi-layer feed forward,

(i) Radial biased function network,

(i) Generalized regression neural networks and

(iv) Adaptive neuro-fuzzy system
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Fig. L structure of an artificial neuron [5] )
"
24
7]
=)
h
Agrawal R K. & Agrawal G. K. Jour. Sci. Res. A. S8j No. 2, (2017): 163-177 165




Downloaded from www.jusres.com
“Effect of suction pressure and other variableseat absorption at evaporator of simple vapour
compression refrigeration system using artificialiral network”

Hidden layer
Input layer Qutput layer
i J\
e Vil Ay
M,j -_J
/ //
\
NS ase ) ! 7\' g \b—-—
_-.\\/ )( N\ \_J N/
.\ ( J

Fig 2 Layers of Network [5]

4. METHODOLOGY
1. Details of the mechanical model (Experimental setdpefrigeration system Fig 3.

Fig.3 Experimental setup

By above mechanical model, we can collect followexgerimental data
piSuction pressure.

p.Delivery pressure.

Mass flow rate of refrigerant.

Can expand refrigerant from the different capillEmygth.

Can use with/without an internal heat exchanger.

Current (Amp).

Voltage (Volt).

T, Temperature at the inlet to the compressor.

T, Temperature at the outlet of the compressor.

T3 Temperature at the outlet to the condenser.

O O 0O O 0O o o o o o o

T4, Temperature outlet of the expansion valve.
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Ts Temperature inlet to a heat exchanger (suctia).lin

Te Temperature outlet to a heat exchanger(sucti@).lin
T; Temperatureinlet to a heat exchanger (delives)lin
TgTemperatureoutlet to a heat exchanger(delivery.line
Tg Temperature of brine inlet to the evaporator.

TioTemperatureof brine outlet to the evaporator.

O O O O O o o

T11Temperature of brine.

And with suitable modification, other necessaryadean be collected. From experimental
data performance parameter will be calculated upeare software [8] and then ANN will
be applied for further analysis and optimizationhe system.

5. TRAINING Of ANN

Experimental data has been collected for refrigeRdr84a and for different suction pressure
p: in kPa (kilo Pascal) value of suction temperaflgdemperature inlet to compressamr
°C (degree centigrade), temperature outlet to cessor Fin °C (degree centigrade) and
delivery pressurepin kPa (kilo Pascal) is recorded and with thip leé other parameter
heat absorbed per kg of refrigerant is calculagedhalpy value are calculated using peace
software[8] out of huge experimental data few syesihte data are selected for different
suction pressure out of which 65 data is usedato hetwork and after training it is tested
with the 05 test data which are excluded whilenireg the ANN networkl.The performance
of the ANN is measured by the absolute fractiorvariation (), Root mean square error
(RMS) and coefficient of variance (COV), which cae calculated by using following

equations (1),(2),(3) recommended by [5].

The fraction of absolute variance is given by

an=1(y rem ~tmea m)z
RZ=1- s (1
Tho1(tmeam)? )

The root mean square value is calculated by

an:( rem_tmea,m)z
RMS=\/ i )
n

Coefficient of variance is calculated by the follogrequation

cov= — =  x100(3)

nm:1(tmea,avg)
Here, n is the number of data patterns in the iaddpnt data set, % n indicates the values

predicted by ANN, &, is the measured value of one data point m @ndatg is the mean
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value of all measured data points. Here in thisep&p, RMSE, COV is calculated for data

used to test the network.

Training the artificial neural network is done MAAB software using neural network
toolbox.Input to the network are suction pressuranxPa (kilo Pascal), suction temperature
i.e temperature inlet to compressariff °C (degree centigrade), delivery pressusia pPa
(kilo Pascal) and temperature outlet to compresgoin °C(degree centigrade) .output
parameter is hear absorbed kJ (kilo Jule)per kgetiigerant65set of data is used to train
network.For this new worksheet is opened renameast input and input data is
saved.Similarly, another worksheet named targepened and experimental output data is
saved as a target. Out of 05set of experimental wised to test the network, the input value is
saved in the worksheet named as a sample as shdiign4.Predicted output of network has
been saved as network_loutputsample.

In command prompt typed into land after pressingrekey followed new window appeared
and we imported input sheet from MATLAB as inpuaital sample sheet as input data and

target sheet as target data then closed the wiadastown in fig 5.

=il
VARIEBLE VEW MEL LS _'_E,l @li\E:JIL'\l['-J(\_ll\-cht-‘:l\uh
u}ﬂ [z Mew Variable: lf Apalyze Code . Ei E {g) Rpiesacestyf 9 R0 4 Coominty
OpenVarasle » % Bunand Tme [ Sef patn = Request Support
Save: @ .M‘ " o o Simufnk  Layout 'J o Help ‘W i
Wokspace [ ClarVionspace v | CearCommands * Ly v GiPealelv v LoAdOMS v
e coos =
» MATLAB » R2013z » hin ¥
@ [ﬁ\JErlabla-lnpm @ X Workspace
target | sample ¥ | input % |Name Value

|J_} input <4455 doubles l_'“n#“t «0y63 double>
I lI\ sample < double>

i L H 3 4 3 b ? i 2 1 10 lg'j target <165 doublex
I Mes00 1565100 15051000 15651000 1599600 1634100 1703000 1703000 17030000 17030 -
2 2 0 bl 25 Pl i B 3 % A
3 113%6e+03) 110M1e+03) 1170%e+03 L120M5e+03 1121Re+03 1.204%e-03 1.20d5e-03 12045e+03 1.2045e-03 1
4 70 68 12 3 69 74 15 B 75 |
5 |
] |
7 I
8 |
g | I Ll m
10 | Command History

Fig 4 Spreadsheet of MATLAB
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Load from dik e

MaT-fieNeme

Select a Variable

Destination

(o slecion)
npus
samgle

Neme
target
Import e
Nietwork
Input Dt
 Target Data
Tt Tnput s
Tt Layer Staes

Output Dtz

Erter Date

Fig 5 MATLAB Importing of data.

Then generated new network by pressing new tabremaimed it as network 1 as output

parameter for this network is heat absorbed ipesaor here and after so many trail finally

selected Network property as shown in fig 6 as netwype —feed forward back propagation

Jinput data as input, target data as target ,trgifiinction as TRAINLM,adaptation learning

function as LEARNGDM,performance function as MESntoer of layer 1, no of neuron as 8

transfer function LOGSIG,and viewed network showfig 7.

Create NMetwork or Data

[

Metwork | Dats|

Name
networkl
Metwork Properties

Network Type:

| Feed-ferward backprop -

Input datar

Target data:

Training function:
Adaption learning function
Performance function:

Number of layers:

Properties for: |Layerl ~

Mumber of nearons:: (8

Transfer Function:

|2 Heip

T

input
target
TRAINLM
LEARNGDIM
MSE

N T

| [ view | [ &% RestoreDefauits |

[ Zrcrente | [ @ ciose |

Fig 6 screen shot of MATLAB showing network property.

I'
A\ Custom Neural Network (view)

|| B [

Hidden Layer

Output Layer

Fig 7 screen shot of MATLAB showing view network whikaining ANN.
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Custom neural network window opened and it shoesdrof input and output data as the

trend is matched we created the network called orétivand added to network/data manager.
Created network is selected and followed in nenealvork/data manager window and shown
in fig 8.Networklproceed by selecting train talsé training information, and under training

data, the input is selected as input and targattagget as shown in fig 9.

1 Network netwerkl (=

View | Train | Smulate | Adapt | Reintisize Weights | View/Edit Weights|

Hidden Layer Output Layer

Fig 8 Network by ANN

18 Network netvorkd ==
I il

|| % Toin Hetwork

Fig 9 Training data by ANN

Under training parameter after so many trails finaélected as shown in fig 10 which gives

training of network in fig 11and regression anayass shown fig 12
1 Nefwork: nebwarkl { ﬂ%

VEW‘ Trn ‘_Sﬂiat&! Adaptl Reittaze Waghtsl Vit Weihts

‘@;ﬁ; Training Parameters ‘ ‘

showtlindow e my s
showCommandline fakse mu dec 01
show 5 miinc 1
epachs 100 i mar 1000000

time Inf
ol 0
tmin,grad e

mafall 5

‘ \tj Traim Network

Fig 10 Training parameter
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4\ Neural Network Training (nhtraintocl) I:' 2t
Neural Network
Hidden Layer Output Layer
Input 1 Output
- 9
4 1
B 1
Algorithms-
Data Division:  Random  [dividerand]
Training: Levenberg-Marquardt  (irainlm]
Performance;  Mean Squared Ertor (mze!
Denvative: Default (defauitder)
Progress
Epochi 0 I S iterations ] 1060
Time: [ 0:00:10 ]
Perfarmance: 7587 [ 475 | 000
Gradient: 739 [l 540 | 1p0e07
M 000100 | 0.0100 | 1.00e:07
Validation Checks: o 5 | s
Plots
| Performance . | {plotperform)
Tmining State. | (plotirainststs)
[ Regression | (plotesgression)
Plat Interval: EU | 1 epachs
v Cpening Regression Plot
® 5o Training @ Cance

Fig 11 Network Training

File Edit View Inset Tools Desktop Window Help
Training: R=0.96734 Validation: R=0.98101
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3 170 & 170
(=3 o o
185

Y ! 6
5 &0 5 160 o
£ 155 £ %
O a7 © 150

150 160 170 180 190 160 160 {70 180 190

Target Target

Fig 12 Regression analysis
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Then trained network is simulated as shown in Bgwith simulation data input as sample
and output as networkl outputsample then resuiteiroutput /predicted data is stored in
network /data manager as shown in fig 14. Fig 1%shetworkl_outputsample value which

is exported to worksheet and compared with an éxjertal output which resembles each
other as shown in table 2.

17 Nefwerk: netwarkd ‘l?‘:' | ) J&J
Vi | T S} e | R Wighs | View/ Gt Weighs

Simulation Data Simulation Results

[nputs sample v | Outputs Inetwork] autputsample

aerts) v| || Finat Inplt Delay States el States

IntLayer Delay States (2105} Final Lager T
Supply Targets vl
Targets | (zeios) v | o Inetworkd_gmors

‘ Simulate Netwark |

Fig 13 Simulation training on ANN

# Nevest NeworkiDeta Micsagen rvtocl)
B Input Ot W Networks
input ey
sarple
@ Trges Dt & tre Dot
..... a1_emrs
gt Deiy Setes 2 Laye Delay Semes
Simpon— || Lodews || LJ Ppen. % Bpon | |38 Dutes Den || O Gom

Fig 14 Outputsample on ANN

& Dats; nEMDrkl_q-ut‘puEam;ﬂel i | E'ﬁ

Value

[[194.2?? 183.0113 182,A304 131.9455 174.8661]

D~

i

| S

| @ ok || ©concel | “

- 5

Fig 15 Predicted Result g
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Table 2 Response Data by ANN

DATA TO TEST TRAINED
NETWORK 3
OUT- [Ann |2
INPUT PUT |output| @
= = g |8 |7
5 5 s g |3
n 0 |o (@] (@] Q.
© .,9 ©C |+ 0 n "5
o| Qo o |=
=| 92 =58| ® I D
< | 73 < |0 0 Q Q 5
s | 55 © GGE)_ E S ) §_ 0 >
> £ <E SlLeg| &2 /2 |25 |« > 0
% g0 S8 #3823 |20 | & o O
1| 72%%]20 | 2195°170 | 10430| 194.28 0.02
2. 177'02 28 1273;‘ 77| 188.13| 188.01| 0.12
0.10
s | 2047] 13493 o [ 1on 00l 18068l 0.3p | 0-9999988) 0.201 | oo
8 1 KIKG | o
4. 232? 24 1342; 75| 182.10| 181.97| 0.13
5. 266'38 31 1514'97 80| 174.61| 174.87| -0.26
6. RESULT:

Result is shown in Table2 as experimental output @utput parameter predicted from

network resembles close to each other withR.9999988 RMSE = 0.201kJ/kg COV=

0.1089%& can conclude ANNs with Network type -feed- forwaback prop, training
function- TRAINLM, adaptation learning function —ARNGDM, can be successfully

applied in the field of performance analysis of [gienvapour compression refrigeration

system. Actual performance of the network is evaldiaising test data since these were not

used for training and table 2 shows thaisRrery close to 1 for test data and RMS error is

very smalD.201kJ/kg. It is clear that ANN (networkl) gives a very ate representation

of statistical data over the full range of opergtoondition and indicates that networkl may

predict heat absorbed at evaporator for given inputy accurately. Evaluation of these result

suggests that heat absorbed are predicted withepgable error (they have a small error).
7. CONCLUSION

The ANN model developed in this study has been ntadmalyze performance analysis of

vapor compression refrigeration system to find thet role of the input parameter to thet

@)

output parameter. Input parameter is suction pressalet temperature to the compressorsY

. . . )]
delivery pressure and outlet temperature to thepcessor which gives the effect of theg

output parameter heat absorbed at evaporator pefr fefrigerant.
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So in this paper an attempt has been made to (#&ilNs) with network type feed-forward

back propagation with suction pressure, inlet tewruoee to compressor, delivery pressure

and temperature outlet to the compressor as irgmatinpeter and heat absorbed at evaporator

as an output parameter.ANN has been successfaihett as experimental output and Output

parameter predicted from networkl resembles claseadch other withR?=0.9999988,
RMSE=0.201kJ/kg COV=0.1089% This way can conclude ANNs with Network type

feed-forward back prop, training function-TRAINLMadaptation

learning function—

LEARNGDM, No of a neuron as 8 and transfer functlddGSIG as networkl, can be

successfully applied in the field of performancealgsis of simple vapor compression

refrigeration system.
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