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ABSTRACT

Floating point unit is an integral part of next-gesmtion processor. The fused Multiply Add

(FMA) operation is used in many scientific and emgring applications. A key feature of
floating point unit is, it greatly increases floagi point performance and accuracy. Many
floating point fused multiply add algorithm are dge reduce latency, the main objective of
our work is to implement this algorithm with a lettchange to reduce the propagation of
errors in an iterative process by using an addili@nror recovery circuit and to also increase
the performance of block.

Keywords. Fused Multiply and Add (MAC) unit operation, floating point functional
unit, FPGA design.

INTRODUCTION

Introduction: In computing, floating point describa system for representing numbers that

would be too large or too small to be representedngegers. Numbers are in general
represented approximately to a fixed number of iB@ggmt digits and scaled using an
exponent. The base for the scaling is normally@pd 16. The typical number that can be
represented exactly is of the form:
Significant digits x base”exponent

The term floating point refers to the fact that ttaelix point (decimal point, or, more o
commonly in computers, binary point) can “floatfiat is, it can be placed anywhere relativé
to the significant digits of the number. This pmsitis indicated separately in the internalg

representation, and floating-point representatiam ¢thus be thought of as a computeﬁ
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realization of scientific notation. Over the vyearseveral different floating-point

representations have been used in computers; howkrethe last ten years the most

commonly encountered representation is that ddfby the IEEE 754 Standard.

The advantage of floating- point representatiomer fixed-point (and integer)
representation is that it can support a much widege of values. For example, a fixed-point
representation that has seven decimal digits witbh tlecimal places, can represent the
numbers 12345.67, 123.45, 1.23 and so on, wher#aatang-point representation (such as
the IEEE 754 decimal 32 format) with seven decimigiits could in addition represent
1.234567, 123456.7, 0.00001234567, 12345670000@0C&@d so on. The floating-point
format needs slightly more storage (to encode tsitipn of the radix point), so when stored
in the same space, floating-point numbers achiéedr tgreater range at the expense of
precision.

Floating point representation: Floating-point regametation is similar in concept to scientific

notation. Logically, a floating-point number cornsisf:

a. A signed digit string of a given base (or radiXhis is known as the significand, or
sometimes the mantissa or coefficient. The radixtpg not explicitly included, but is
implicitily assumed to always lie in a certain pi@® within the significand-often just
after or just before the most significant digit, torthe right of the rightmost digit. This
article will generally follow the convention thatet radix point is just after the most
significant (leftmost) digit. The length of the sificand determines the precision to
which numbers can be represented.

b. A signed integer exponent, also referred tthascharacteristic or scale, which modifies
the magnitude of the number.

The significand is multiplied by the base raisedhe power of the exponent, equivalent to

shifting the radix point from its implied positidsy a number of places equal to the value of

the exponent-to the right if the exponent is pesitr to the left if the exponent is negative.

Symbolically, this final value is

SxiF

where s is the value of the significand (afterngkinto account the implied radix point), b is

the base, and e is the exponent.

Equivalently, this is:
s/bPxp*®

Where s here means the integer value of the esigraficand, ignoring any implied decimal

point, and p is the precision-the number of digitthe significand.
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Historically, different bases have been used fpregenting floating- point numbers, with
base 2 (binary) being the most common, followedblage 10 (decimal), and other less
common varieties such as base 16 (hexadecimaliotat-loating point numbers are
rational numbers because they can be representatkasteger divided by another. The base
however determines the fractions that can be repted exactly using a decimal base.
The way in which the significant, exponent and digs are internally stored on a computer
is implementation-dependent. The common IEEE fosnzeie described in detail later and
elsewhere, but as an example, in the binary sipgeision (32-bit) floating-point
representation p=24 and so the significant isiagtf 24 bits (1s and 0s). For instance, the
numbern’s first 33 bits are 11001001 00001111 1101101000010 0. Rounding to 24 bits
in binary mode means attributing the™Mit the value of the 25 which yields 1101001
00001111 11011011. When this is stored using ti€EIE54 encoding, this becomes the
significand s with e=1 (where s is assumed to lealeary point to the right of the first bit)
after a left adjustment (or normalization) durindpieh leading or padding zeros are are
truncated should there be any. Note that they donadter anyway. Then since the first bit of
a non-zero binary significant is always 1 it neaat be stored, giving an extra bit of
precision. To calculate the formula is:
(1+ Py bty x 2,) x2P=(1+1x2MH4+0x2%+1x2% ... 2% x2' = 1.5707964%2

Where n is the normalized significant’s nth bitrfréhe left. Normalization, which is reversed
when 1 is being added above, can be thought of@srmaof compression: it allows a binary

significant to be compressed into a field one bhdrger than the maximum precision, at the

expense of extra processing.
1.3 Range of floating point humbers: By allowing thelirapoint to be adjustable,
floating-point notation allows calculations ovema@de range of magnitudes, using a fixed
number of digits, while maintaining good precisiéior example, in a decimal floating point
system with three digits, the multiplication thainmans would write as
0.12 x 0.12 =0.0144
Would be expressed as
(1.2 x 107-1) x (1.2 x 107-1) = (1.44 x 107-2).
In a fixed-point system with the decimal pointla teft, it would be
0.120 x 0.120 = 0.014.

A digit of the result was lost because of the ihigiof the digits and decimal point to ‘float’

relative to each other within the digit string.

The range of floating-point numbers depends on rthember of bits or digits used for
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representation of the significand (the significdigits of the number) and for the exponent.
On atypical computer system, a ‘double precisi@4-it) binary floating-point number has
a coefficient of 53 bits (one of which is implied)y exponent of 11 bits, and one sign bit.
Positive floating-point numbers in this format haae approximate range of 107-308 to
107308 (because 308 is approximately 1023 x log2eghe range of the exponent is [-1022,
1023]). The complete range of the format is frorowlb 107308 through +107308 (see IEEE
754).
The number of normalized floating-point numbersaisystem F(B,P,L,U) (where B is the
base of the system, P s the precision of the sysigmnumbers, L is the smallest exponent
representable in the system, and U is the larggsbreent used in the system) is: 2*(B-
1)*BMN(P-1)*(U-L+1).
There is a largest floating-point number, Overflewel = OFL = BANU+1)*(1-B~(-P)) which
has B-1 as the value for each digit of the mantessa the largest possible value for the
exponent.
1.4 IEEE 754: Floating point in Modern Computers: THeEE has standardized the
computer representation for binary floating-poinimbers in IEEE 754. This standard is
followed by almost all modern machines. Notable egtions include IBM mainframes,
which support IBM’s own format (in addition to thEeEE 754 binary and decimal formats),
and Cray vector machines.
1.5 Basic Formats: The standard defines five basic &smsee table (1), the first three
formats named and use 32,64 and 128 bits resphlctiiee last two formats are used for
decimal floating point numbers and use 64 and 1®8td encode them. All the basic formats
may be available in both hardware and software empintations. This thesis concerns only
on binary floating point with double precision faatnso it will be discussed in more details.
Table 1 Five basic formats of IEEE Standard

Name Common name Base Digils Emin Emax
Binary 32 Single precision 2 23+1 -126 +127
Binary 64 Double precision 2 52+1 -1022 +1023
Binary128 Quadruple precisionn 2 11241 -16382 +16383
Decimal 64 10 16 -383 +384
Decimal 128 10 34 -6143 +6144

016

1.6  Rounding modes: rounding is used when the exauattreka floating-point operation &
(or a conversion to floating-point format) wouldedemore digits than there are digits in thﬁ

significand. There are several different roundicesnes (or rounding modes). IEEE 75@
h
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specifies the following rounding modes:
(a) Round to nearest, where ties round to the seaken digit in the required position (the

default and by far the most common mode).
(b) Round to nearest, where ties round away from @gtional for binary floating-point and

commonly used in decimal).
(c) Round up (toward +$; negative results thus dotomvards zero).
(d) Round down (toward -$; negative results thusicbaway from zero).
(e) Round towards zero (sometimes called “chop” endatds similar to the common behavior

of float-to-integer conversions, ,which conver9-8 -3).
Floating Point Operations
2.1 Multiplication: Multiplication of two floatingpoint values follows basic algebraic
concepts. A number x may be rewritten as shownguagon, where xis a normalized
mantissa of x, base is the number base (10 fomddcand 2 for binary), and exp is the
number of shifts the radix point was shifted to te& to normalize ¥* base”x. From
equation it is clear that any IEEE Standard flappoint number may be written in this
manner, and the format provides all the componginéstly. Given this notation, the product
of two number x and y may be obtained by the follmiprocedure:

Product = x*y
=X x basé**y | x basé*?
= Xn* Yon X bas&PL+ &p2

This splits the multiplication process into two g@i&l data paths. The first calculates the sum
of the exponents, while the second calculates thdyat of the two mantissa. Because both
data paths operate on standard integer values,nlagybe implemented using conventional
hardware methods. When dealing with IEEE floatiogap numbers, the multiplication
involves several additional steps. In the unpackrapds(UO) stage, the mantissa and
exponent fields of each operand need to be evaluateorder to correctly generate the
implied MSB of the mantissa. To reiterate, the MSBnplied to the one for all cases except
when the exponent is zero. If the exponent is a@e the mantissa is greater than zero, the
exponent is set to one since this indicates tlebfierand is a denormalized number.

2.2 Basic Algorithm: Let A,B and C be the operaneisresented by (ME.), (Mp,Ey), and S
o

(Mc,Ec) respectively. The significand are signed and radizad, and the result W is given by: &
W=A+(BxC) 3

[+4

7))

=)

w
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Where W is represented by (ME,), where Mw is also signed and normalized. The high
level description of this operation is composetheffollowing five steps:

(a)Multiply significand M, and M, add exponents Eb and Ec, and determine the afighm
shift and shift Ma, produce the intermediate resyfionent Ew = max g, +E).

(b) Add the product and aligned Ma.

(c) Normalize the adder output and update the resplonent.

(d) Round.

(e)Determine the exception flags and special values

Mb Mc

‘s

M by m
multiplier

Sh{ﬂpdlstar‘;ce o Right shifter

Max(Ea.Eb+Ec)

Carry save
adder(csa

] B e S e

Leading zero | | R | | Sticky

anticlpator{LZA) calculation

normallzer

Figure 1 Basic implementation of FMA operation

2.3 Algorithm Description:

() Sticky bit: Inexact sticky bit (or just stickyit) calculation is closely related to the
alignment phase of floating-point addition. Theclsfi bit is required to guarantee correct
rounding in the final stage of floating-point arthtic. In a typical FMA path, inexactness
can occur in two process when bits are shiftedobuange during alignment of C, and when
intermediate result is scaled back to register afger normalization. During alignment, the
sticky bit calculation can be thought of as anaxXit position behind the shifter that records

all bits that pass through it while being shifted of range.

1.0010011010001000 ©
i

1.001001101000Q00 ~
1.001001101001000 g

n:

(/)]

)

w
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If al passes through, the sticky-bit will rememthes and stay 1 regardless of other bits that
pass through. This cannot directly be implementedardware, because most shifters do not
shift bit-after-bit. The sticky bit can however fmund by OR’ing all bits beyond the LSB
into a sticky bit.

(b) Multiplication: Fundamentally, a multiplicatiois a series of additions. A binary n-bit
multiplication can be realized by performing a esmf n-shifts and additions.

(b.1) Both encoding: booth’s algorithm serves twopwses. First it enables us to multiply
signed (two’s complement) numbers and secondlyeipreduce the number of partial
products. To understand Booth multipliers we flratze to recapitulate the basics of binary
multiplication. Several important observations da® made in binary multiplication: In
multiplications (A*B) we have a multiplier (A) ara multiplicand (B). for each digit in the
multiplier, a partial product is generated. If theltiplier bit is O, the partial product is zero,
otherwise the partial product is the multiplicaitie final product is produced by repeatedly
shifting a partial product to the left and addinda the preceding partial product. A small

example of binary multiplication is shown below:

101110 Multiplicand
010011  Multiplier
101110 Partial produets
101110
000000
000000
101110
00000
0011011010410

(b.2) Carry save adders; The adder is also ornleeobldest and most widely used arithmetic
components in digital processors. Its purpose &dib two operands A and B. in its simplest
form a binary adder adds two bits. Such a comlonaticircuit is called a half adder. The
elementary operations of a half adder. The eleangrperations of a half adder are 0+0=0,
0+1=1, 1+0=1, 1+1=10. When both the augends andrafidre 1, the output consists of two
bits. Because of this, the output of adder is abuapresented by two bits, the sum and the
carry. If n-bits operands are added, the carrytsfib position i-1 (i< n) is added to the next
higher order pair of bits i. this requires a conalbamial circuit that can perform addition on S
three bits: A,B and carry in. Such a circuit carcbastructed from two half adders combined?{

with an OR-gate and is called a full adder. To &dal n-bit operands, a chain of n full addersgj:

JUSR
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can be used in cascade, with their carry out froenftlll adder connected to the carry in of
the next full adder, as shown in figure.

The carry save adder (CSA) is a type of adderdbatputes the sum of three or more binary
inputs. It differs from other binary adders in thatoutputs two numbers of the same
dimensions as the inputs, one which is a sequehpartial sum bits and other which is a
sequence of carry bits. Due to this redundant fofroutput, carry propagation is completely

eliminated. A single bit, three bit input CSA iso8n in figure, compared to a full adder.

A B A B C

S Lo

Cout« FA |« Cin |:J> CSA

l "o

Hurm Carry Sum

Figure 2 Full adder and carry save adder

(b.3) Addition: So far we have seen that C carcelfitly be aligned to the product in parallel
with the multiplication of A and B itself. Even add C to the product does not require many
sources or additional delay. However, we have mbtnyentioned anything about negative
numbers. A problem arises when the signs of A*B @ndre different or when we simply

want to subtract C from A*B. eight different sceinarcan be distinguished when performing

signed addition/ subtraction:

A+ B

-A+-B
A +-B (A>B)
A + -B (A<B)
A—- B (A>B)
A— B (A<B)
-A - -B (A>B)
-A - -B (A<B)

(b.4) Normalization: In the final stage, after hayimultiplied A with B and after having
added c, the result will mostly likely have to bermalized and rounded. Normally, theseé
operations contribute to the critical path. We gaprove the situation by using a techniquezg

called LZA. A prediction of the number of leadingras that can be performed in paralle%
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with addition.

(b.5) Leading Zero Anticipation: All normalized #ting point numbers must have a ‘1’ as
leading significand bit. In most cases, an intenatedresult is not normalized. Hence, a
floating-point unit must be able to normalize ksults. The normalization process involves
detection of leading zeroes. LZAs make use of pagate (T), a generate (G), and a kill (2)
function . These functions are defined as the naaiready suggest, these functions look for
carry generation, carry termination and carry pgap@an. They help find patterns in the input
(tuples (Ai-1,Bi-1), (Ai,Bi), (Ai+1,Bi+1l) per indiator i) that generate the appropriate
indicator bit for position i. if the adder is ale perform addition on signed numbers, the
LZA algorithm becomes a bit more complicated. ib@ld not only be able to detect leading
zeroes, but also leading ones, several cases cdistbeguished in which different patterns

have to be matched to find the leading one.

A 0000101100012111000
B 000001000011111010
[ZApattern ZZZZTTTTZZTGGGGZTIZ
A+B 000011110101110010
Leadingone =--=--f-=occccaccaan-

Figure 3 Leading zero anticipation example

CONCLUSION

The precise fused floating-point MAC unit with capfrable architecture is very efficient.
The MAC unit uses only one rounding technique teabunding towards zero. The earlier
methods uses more hardware but the MAC unit useslgss hardware. The normal adder
used in earlier methods while representing thetbé, LSB there corresponds to half adder
and rest of bits including MSB corresponds to &dder. While in MAC unit all the bits from
LSB to MSB totally corresponds to full adder. Thelier methods does not introduce any
error recovery circuit to avoid the errors while tMAC unit introduces error recovery circuit

to avoid the errors.

REFERENCES Systems, Architectures and Processors
[1] Akkas, A.; Schulte, M.J., "A decimal (ASAP), 2011 IEEE International ©
floating-point fused multiply-add unit Conferenceon, vol., no., pp.43,50, 11- S
with a novel decimal leading-zero 14 Sept. 2011 g
anticipator,"” Application-Specific né
=4

Chouhan, J. S. & Jain, Nlour. Sci. Res. A. &ci.2, No.3, (2016): 57-66

o)
9]



Downloaded from www.jusres.com
“Fused floating point MAC (multiply and add) unifttv configurable architecture”

[2] Swartzlander, E.E.; Saleh, H.H., "FFT Sgnal Processing (PacRim), 2011
Implementation with Fused Floating- |EEE Pacific Rim Conferenceon, vol.,
Point Operations,"Computers, |EEE no., pp.696,701, 23-26 Aug. 2011
Transactions on , vol.61, no.2, [6] Jongwook Sohn; Swartzlander, E.E.,
pp.284,288, Feb. 2012 "Improved Architectures for a Fused

[3] Chi Wai Yu; Smith, A.M.; Luk, W.; Floating-Point Add-Subtract Unit,"
Leong, P.H.-W.; Wilton, S. J E, Circuits and Systems |: Regular
"Optimizing Floating Point Units in Papers, IEEE Transactionson, vol.59,
Hybrid FPGAs," Very Large Scale no.10, pp.2285,2291, Oct. 2012
Integration (VLY) Systems, I|EEE [7] Gilani, S.Z.; Nam Sung Kim; Schulte,
Transactions on , vol.20, no.7, M., "Energy-efficient floating-point
pp.1295,1303, July 2012 arithmetic for digital signal

[4] Janhunen, J.; Salmela, P.; Silven, O processors,"” Sgnals, Systems and
Juntti, M., "Fixed- versus floating- Computers  (ASILOMAR), 2011
point implementation of MIMO- Conference Record of the Forty Fifth
OFDM detector," Acoustics, Speech Asilomar Conference on , vol., no.,
and Sgnal Processing (ICASSP), 2011 pp.1823,1827, 6-9 Nov. 2011.

IEEE International Conference on [8] Krasniewski, A., "Low-Cost
vol., no., pp.3276,3279, 22-27 May Concurrent Error Detection for FSMs
2011. Implemented Using Embedded

[5] Zaki, A.M.; Bahaa-Eldin, A.M.; EI- Memory Blocks of FPGASs,"Design
Shafey, M.H.; Aly, G.M., "Accurate and Diagnostics of Electronic Circuits
floating-point operation using and systems, 2006 IEEE , vol., no.,
controlled floating-point precision,"” pp.178,183, 18-21 April 2006

Communications, Computers and

2‘ JUSRES, 2016

Chouhan, J. S. & Jain, Nlour. Sci. Res. A. &ci.2, No.3, (2016): 57-66




